jueves, 11 de junio de 2009

EVOLUCION DEL ATOMO




























Modelo de Dalton
Artículo principal: Modelo atómico de John Dalton
Fue el primer modelo atómico con bases científicas, fue formulado en 1808 por John Dalton, quien imaginaba a los átomos como diminutas esferas. Este primer modelo atómico postulaba:
La materia está formada por partículas muy pequeñas llamadas átomos, que son indivisibles y no se pueden destruir.
Los átomos de un mismo elemento son iguales entre sí, tienen su propio peso y cualidades propias. Los átomos de los diferentes elementos tienen pesos diferentes.
Los átomos permanecen sin división, aún cuando se combinen en las reacciones químicas.
Los átomos, al combinarse para formar compuestos guardan relaciones simples.
Los átomos de elementos diferentes se pueden combinar en proporciones distintas y formar más de un compuesto.
Los compuestos químicos se forman al unirse átomos de dos o más elementos distintos.
Sin embargo desapareció ante el modelo de Thomson ya que no explica los rayos catódicos, la radioactividad ni la presencia de los electrones (e-) o protones(p+).

Modelo de Thomson

Modelo atómico moderno

Funciones de onda de los primeros orbitales atómicos

Modelo atómico de Thomson
Artículo principal: Modelo atómico de Thomson
Luego del descubrimiento del electrón en 1897 por Joseph John Thomson, se determinó que la materia se componía de dos partes, una negativa y una positiva. La parte negativa estaba constituida por electrones, los cuales se encontraban según este modelo inmersos en una masa de carga positiva a manera de pasas en un pastel (de la analogía del inglés plum-pudding model) o uvas en gelatina. Posteriormente Jean Perrin propuso un modelo modificado a partir del de Thompson donde las "pasas" (electrones) se situaban en la parte exterior del "pastel" (la carga positiva).

Detalles del modelo atómico
Para explicar la formación de iones, positivos y negativos, y la presencia de los electrones dentro de la estructura atómica, Thomson ideó un átomo parecido a un pastel de frutas. Una nube positiva que contenía las pequeñas partículas negativas (los electrones) suspendidos en ella. El número de cargas negativas era el adecuado para neutralizar la carga positiva. En el caso de que el átomo perdiera un electrón, la estructura quedaría positiva; y si ganaba, la carga final sería negativa. De esta forma, explicaba la formación de iones; pero dejó sin explicación la existencia de las otras radiaciones.







Modelo de Rutherford

Modelo atómico de Rutherford
Artículo principal: Modelo atómico de Rutherford
Este modelo fue desarrollado por el físico Ernest Rutherford a partir de los resultados obtenidos en lo que hoy se conoce como el experimento de Rutherford en 1911. Representa un avance sobre el modelo de Thomson, ya que mantiene que el átomo se compone de una parte positiva y una negativa, sin embargo, a diferencia del anterior, postula que la parte positiva se concentra en un núcleo, el cual también contiene virtualmente toda la masa del átomo, mientras que los electrones se ubican en una corteza orbitando al núcleo en órbitas circulares o elípticas con un espacio vacío entre ellos. A pesar de ser un modelo obsoleto, es la percepción más común del átomo del público no científico. Rutherford predijo la existencia del neutrón en el año 1920, por esa razón en el modelo anterior (Thomson), no se habla de éste.
Por desgracia, el modelo atómico de Rutherford presentaba varias incongruencias:
Contradecía las leyes del electromagnetismo de James Clerk Maxwell, las cuales estaban muy comprobadas mediante datos experimentales. Según las leyes de Maxwell, una carga eléctrica en movimiento (en este caso el electrón) debería emitir energía constantemente en forma de radiación y llegaría un momento en que el electrón caería sobre el núcleo y la materia se destruiría. Todo ocurriría muy brevemente.
No explicaba los espectros atómicos.

Modelo de Bohr

Modelo atómico de Bohr
Artículo principal: Modelo atómico de Bohr
Este modelo es estrictamente un modelo del átomo de hidrógeno tomando como punto de partida el modelo de Rutherford, Niels Bohr trata de incorporar los fenómenos de absorción y emisión de los gases, así como la nueva teoría de la cuantización de la energía desarrollada por Max Planck y el fenómeno del efecto fotoeléctrico observado por Albert Einstein.
“El átomo es un pequeño sistema solar con un núcleo en el centro y electrones moviéndose alrededor del núcleo en orbitas bien definidas.” Las orbitas están cuantizadas (los e- pueden estar solo en ciertas orbitas)
Cada orbita tiene una energía asociada. La más externa es la de mayor energía.
Los electrones no radian energía (luz) mientras permanezcan en orbitas estables.
Los electrones pueden saltar de una a otra orbita. Si lo hace desde una de menor energía a una de mayor energía absorbe un cuanto de energía (una cantidad) igual a la diferencia de energía asociada a cada orbita. Si pasa de una de mayor a una de menor, pierde energía en forma de radiación (luz).
El mayor éxito de Bohr fue dar la explicación al espectro de emisión del hidrogeno. Pero solo la luz de este elemento. Proporciona una base para el carácter cuántico de la luz, el fotón es emitido cuando un electrón cae de una orbita a otra, siendo un pulso de energía radiada. Bohr no puede explicar la existencia de orbitas estables y para la condición de cuantización. Bohr encontró que el momento angular del electrón es h/2π por un método que no puede justificar.

Modelo de Schrödinger: modelo actual

Densidad de probabilidad de ubicación de un electrón para los primeros niveles de energía.
Artículo principal: Modelo atómico de Schrödinger
Después de que Louis-Victor de Broglie propuso la naturaleza ondulatoria de la materia en 1924, la cual fue generalizada por Erwin Schrödinger en 1926, se actualizó nuevamente el modelo del átomo.
En el modelo de Schrödinger se abandona la concepción de los electrones como esferas diminutas con carga que giran en torno al núcleo, que es una extrapolación de la experiencia a nivel macroscópico hacia las diminutas dimensiones del átomo. En vez de esto, Schrödinger describe a los electrones por medio de una función de onda, el cuadrado de la cual representa la probabilidad de presencia en una región delimitada del espacio. Esta zona de probabilidad se conoce como orbital. La gráfica siguiente muestra los orbitales para los primeros niveles de energía disponibles en el átomo de hidrógeno y oxígeno.

particulas del atomo







Protones y Neutrones forman un Núcleo central extremadamente pequeño en el que se concentra prácticamente la masa del átomo y presenta una carga eléctrica positiva.
Alrededor del núcleo se encuentran los electrones, formando una Corteza que posee carga eléctrica negativa.
En un átomo estable la carga del núcleo tiene el mismo valor absoluto que la de la corteza.
Los átomos de distintos elementos difieren entre sí por el número de partículas fundamentales. Cada elemento tiene asociados dos valores numéricos que indican el número de partículas fundamentales que posee :
Z.- NUMERO ATOMICO, indica el número de electrones de la corteza o el número de protones (ya que ambos coinciden).
A.- NUMERO MASICO, indica la suma de protones y neutrones presentes, y por tanto la masa del átomo.
Se descubrió que había átomos de un mismo elemento que diferían en el número de neutrones, pero manteniendo igual el de electrones y protones ; es decir, tenían igual Z pero distinto A. A estos átomos especiales se les denomina ISOTOPOS.
Si no existieran isótopos las masas de todos los elementos serían números enteros, pero su existencia y su porcentaje de presencia en la naturaleza permite establecer números másicos (masa isotópica) representativos de los elementos que tienen isótopos.
Se denomina Defecto de Masa de un átomo a la diferencia entre su masa isotópica y la suma de las masa de las partículas que lo constituyen.

martes, 9 de junio de 2009

PARTICULAS DEL ATOMO

particulas fundamentales del atomo
martes 9 de junio de 2009

el atomo y sus particulas
La antimateria es materia constituida por la antiparticulas (antielectrones, antiprotones y antineutrones) La diferencia los electrones y protones de los antielectrones y los antiprotones y los antineutrones es basicamente la carga electrica, son identicas en aspecto fisico y en constitucion, sus movimientos rotatorios se han invertido, el polo sur magnetico, por decirlo asi, esta arriba y no abajo, de esta manera su carga electrica es la opuesta de lo que deveria de ser. Como vimos hasta ahora, el positron es la contrapartida del electron por su carga contraria, y el antiproton es tambien "anti" por su carga. El antielectron es tan estable como el electron, de hecho es identico al electron en todos sus aspectos, excepto en su carga electrica. Su existencia puede ser indefinida. Aunque el promedio de "vida" es de una millonésima de segundo, hasta que se encuentra con un electron, durante un momento relampagueante quedaran asociados el electron y el positron; ambas partículas giraran en torno a un centro de fuerza comun. Pero la existencia de este sistema, como maximo, durara una diezmillonesima de segundo ya que se combinan el positron y el electron. Cuando se combinan las dos particulas opuestas, se produce una neutralizacion mutua y literalmente desaparecen, no dejan ni rastro de materia ("aniquilamiento mutuo"). Pero como sabemos la materia al igual que la energia no puede desaparecer, como resultadp de esto queda la energia en forma de radiacion gamma. De tal forma como habia sugerido el genio Albert Einstein: la materia puede convertirse en energia, y viceversa. El antiproton es tan evanescente como el positron, por lo menos en nuestro Universo. En una infima fraccion de segundo después de su creacion, la particula desaparece (al igual que el antielectron), arrastrada por algun nucleo normal cargado positivamente. Entonces se aniquilan entre si el antiproton y un proton del nucleo, que se transforman en energia y particulas menores. En ocasiones, el proton y el antiproton solo se rozan ligeramente en vez de llegar al choque directo. Cuando ocurre esto, ambos neutralizan mutuamente sus respectivas cargas. El proton se convierte en neutron, lo cual es bastante logico. Pero no lo es tanto que el antiproton se transforme en un "antineutron". Con algo de fisica elemental es facil comprender como forma un campo magnetico la particula cargada, pero ya no resulta tan facil saber por que hace lo mismo un neutron. Que por sierto ocurre. La prueba directa mas evidente de ello es que cuando un rayo de neutrones golpea sobre un hierro magnetizado, no se comporta de la misma forma que lo haria si el hierro no estuviese magnetizado. El magnetismo del neutron sigue siendo un misterio (al menos yo no me entere ), los fisicos sospechan que contiene cargas positivas y negativas equivalentes a cero, aunque, por alguna razon desconocida, logran crear un campo magnetico cuando gira la partícula. Sea como fuere, la rotacion del neutronantineutrón? Pues, simplemente, un neutron cuyo movimiento rotatorio se ha invertido y al igual que el positron y el antiproton, muestraa exactamente el mismo fenomeno de los polos invertidos. Por lo pronto, la teoria es bastante solida, y ningun fisico lo pone en duda. La antimateria puede existir. Pero.... ¿Existe en realidad? ¿Hay masas de antimateria en el Universo? Si las hubiera, no revelarían su presencia a cierta distancia. Sus efectos gravitatorios y la luz que produjeran serian identicos a los de la materia corriente. Sin embargo, cuando se encontrasen con esta materia, deberían ser claramente perceptibles las reacciones masivas de aniquilamiento resultantes. Por esto, los astronomos se afanan en observar especulativamente las galaxias, para comprobar si hay alguna actividad inusitada que delate las interacciones materia-antimateria. ¿Es posible, que el Universo este formado casi enteramente por materia, con muy poca o ninguna antimateria? Dado que la materia y la antimateria son equivalentes en todos los aspectos, excepto en su oposicion electromagnetica, cualquier fuerza que crease una originaria la otra, y el Universo deberia estar compuesto de iguales cantidades de una y otra. Este es el dilema. La teoria nos dice que deberia haber antimateria, pero la observacion practica se niega a respaldar este hecho. ¿Y que ocurre con los nucleos de las galaxias activas? ¿Deberian ser esos fenomenos energeticos el resultado de una aniquilacion materia-antimateria? NO! Ni siquiera ese aniquilamiento es suficiente, la destruccion seria grandes veces mayor (para darse una idea de la magnitud lo mas parecido es el colapso gravitatorio de una supernova al explotar y el fenomeno resultante: el agujero negro, seria el unico mecanismo conocido para producir la energia requerida para tanta destruccion) Espero que les sirva esta explicasion de basicamente que es la antimateria, hacepto dudas, sugerencias y por que no agradecimientos una diferencia en las cantidades materia y antimateria cuando se formo el Universo, hizo que se aniquilara casi todo, y como habia un poquito mas de materia, es lo que quedo y vemos ahora. El asunto es que deberia haber las mismas cantidades de ambas, pero como la fisica -fundamentalmente cuantica- permite minimas desviaciones de 50-50, se considera que el Universo inicial, antes de la aniquilacion, deberia ser millones de veces mas masivo que ahora!!!. De hecho en los laboratorios se obtiene antimateria, pero es improbable que haya grandes cantidades en el Universo., es muy probable que se haya creado una gran cantidad de antimateria (ya que si probabilidad es tan baja como para crearse por humanos en un laboratorio en meses, cuanta mas se puede crear en un ambiente totalmente perfecto para la creacion de antimateria en millones de años), pero seria de extrañar que quedara alguna de esta, devido a su "tendencia suicida". Seria un honor que publiques mi explicacion como un articulo._________________